UCAM-550A

Fast Data Logger

Synchronous sampling at 50 Hz of all channels

- Synchronous* sampling of all channels
- Synchronous measurement of 1000 channels at max. 50/s
- Synchronous measurement of up to 20 units possible using a LAN cable
- Control using Dynamic Data Acquisition Software DCS-100A
- •5 types of measuring units available
- * Except temperature measurement using USM-51B or USM-52B

To Ensure Safe Usage

DCS-100A of a standard accessory can be measured up to 300 channels. Measurement up to 1000 channels requires an optional software DCS-106A. See page 4-6.

UCAM-550A is a fast data logger that repeatedly measures a maximum of 1000 channels at an interval of 0.02 s.

Because this is capable of high-speed synchronous measurement, this unit measures a wide range of phenomena, from static to dynamic phenomena. The following 5 types of measuring units are provided.

- Strain Unit USS-51B (Potentiometer-type sensor also supported)
- ●Voltage Unit USV-51B
- ●Thermocouple Unit UST-51B
- Strain/Voltage/Thermocouple Unit USM-51B, USM-52B

They support strain gages, strain-gage transducers, voltage output sensors, potentiometer-type sensors, and thermocouples, measure and collect strain and stress, load, pressure, and displacement, as well as voltage and temperature.

Measuring channels is for 1 unit a maximum of 50 channels, and with 20 units cascaded, a maximum of 1000 channels, and this is suited from small-scale to large-scale measurement.

Measuring Targets and Measuring Unit

Measurii	ng targets	Measuring units	USM-51B/52B*	USS-51B	USV-51B	UST-51B
Strain gages	Quarter bridge	120 Ω	Yes	Yes		
3.3	Quarter bridge	350 Ω	Yes	Yes		
Strain-gage	Half bridge	Active-dummy	Yes	Yes		
transducers	120 to 1 k Ω	Active-active	Yes	Yes		
	Full bridge	Active opposite-leg	Yes	Yes		
	120 to 1 k Ω	Full bridge	Yes	Yes		
Potentiomet	ter-type sensors	1 to 10 kΩ	Yes	Yes		
Vo	ltage	±20 V	Yes		Yes	
		K	Yes			Yes
		T	Yes			Yes
Temperature	Thermocouples	E	Yes			Yes
Temperature	mermocoupies	J	Yes			Yes
		R	Yes			Yes
		N	Yes			Yes*

^{*}Requires UCAM-550A firmware version 03.00 or latter.

Specifications

יץי	ecilicat	10113					
	■UCAM-550A						
Ī	Models	UCAM-550A	With DCS-100A				
-		UCAM-550A-0	Without DCS-100A				
(Channels						
	Maximu	um of 50 channels	/unit (Possible up to 5 units of the				
	measur	ing unit)					
	(Each m	neasuring unit me	asures 10 channels.)				
	Measur	ement is possible ι	up to 1000 channels at maximum by adding				
	an optio	onal software DCS	-106A.				
	*The public command corresponds up to 20 units (Max. 1000 channels)						
	*DCS-100A corresponds up to 6 units (Max. 300 channels).						
9	Sampling Method Synchronous sampling of all channels						
9	Sampling	Frequencies 1, 2	2, 10, 20, and 50 Hz				
	*Respo	onse frequency de	pends on the measuring unit.				
	USM-	-51B/52B* USS-51	1B USV-51B UST-51B: DC to 7.8 Hz				

Deviation: 0.5 to -3.5 dB *For temperature measurement with USM-51B/52B using scanning mode, the updating rate is approx. 1 s.

	,	THE TOTAL CONTRACTOR OF THE PERSON OF THE PE	
Amplitud	de (dB)		
0 🔷	-		
-1	Ĭ	1 1 1 1111	-1 1 11111
'			
-2			
-3	į	- i - i - i i i i i i i i i i - i - i -	
-3			
-4	!		
-	- 1		
-5			
-6	i	<u> </u>	
0.1	0.2	0.5 1 2	5 10
		Frequencies (Hz)	

Measuring Fund	tions Original value measurement	
	Measure value measurement	
Interfaces	10 BASE-T, 100BASE-TX	
	Between PC and UCAM	
	LAN cable (Straight) Max. 100 m	
	Between UCAM and UCAM	
	STP straight cable (See notes) Max. 100 m	
	Note: "STP" is the initials of Shield Twisted Pair,	
	and an STP cable is a shielded LAN cable	
Display	LCD (20 digits x 2 lines)	
Status display LED: POWER (When power ON, lit gree		
MASTER (When master, lit green, when slave, not		
TRANSFER (When communications, flashing gre		
Operation Keys	UP, Down, Left, Right	
Data Storage	Measurement data is saved on a PC (No internal storage)	
Operating Temp	perature 0 to 40°C	
Operating Hum	idity 20 to 85% RH (Non-condensing)	
Power Supply	100 to 240 VAC	
Approx. 50 VA (With 5 USS-51B strain u		
	installed, and 120 Ω load on all channels connected)	
Dimensions	$426 \mathrm{W} \times 132.5 \mathrm{H} \times 305 \mathrm{D} \mathrm{mm}$ (Excluding protrusions)	
Weight	Approx. 7 kg (With 5 USS-51B strain units installed)	

Standard Accessories AC power cable P-18 (With a 2-pin conversion plug CM-39), ground wire P-72, DVD (DCS-100A, instruction manual)

Dedicated Optional Accessories

Strain/Voltage/Thermocouple Unit USM-51B/USM-52B				
Input Terminals				
USM-51B: NDIS connec	tors, and screw-soldering terminal blocks			
USM-52B: NDIS connec	tors, and one-touch terminal blocks			
Channels	10			
Measuring Targets	Strain gages, strain-gage transducers,			
potentiometer-type sensors,				
	voltage, and thermocouples			
Bridge Excitation	2 VDC			
Power Supply to Sensors	2 VDC, for potentiometer-type sensors			
Gage Factors	2.00 fixed			
Frequency Response	DC to 7.8 Hz, deviation: 0.5, -3.5dB			
	(Except temperature measurement)			
Burn-out Check Performing burn-out when checking				
TEDS	Reads information from TEDS-installed sensor.			

Strain, Potentiometers, and Voltage

Targets	Mode	Range	Resolution	Accuracy
Strain	L	0 to ±19 k ×10 ⁻⁶ strain	1 ×10 ⁻⁶ strain	+0.08%FS
Strain	Н	0 to ±300 k ×10 ⁻⁶ strain	10 ×10 ⁻⁶ strain	10.00 /01 3
Potentio	meters	-50% to 50%	0.01%	±0.1%FS
Volta	ige	-20 to 20 V	1 mV	±0.08%FS

Thermocouples

Types	Range	Accuracy* (Resolution: 0.1 °C)		
K	-200.0 to 1200.0 °C	-200.0 to below -100.0 °C	±(0.3% of reading + 0.8 °C)	
	-200.0 to 1200.0 °C	-100.0 to 1200.0 °C	±(0.2% of reading + 0.6 °C)	
Т	-200.0 to 350.0 °C	-200.0 to below -100.0 °C	±(0.3% of reading + 0.8 °C)	
'	-200.0 to 350.0 °C	-100.0 to 350.0 °C	±(0.2% of reading + 0.6 °C)	
F	F -200.0 to 800.0 °C	-200.0 to below -100.0 °C	±(0.3% of reading + 0.8 °C)	
-	-200.0 10 800.0 -C	-100.0 to 800.0 °C	±(0.2% of reading + 0.6 °C)	
	-200.0 to 750.0 °C	-200.0 to below -100.0 °C	±(0.3% of reading + 0.8 °C)	
J	-200.0 to 750.0 °C	-100.0 to 750.0 °C	±(0.2% of reading + 0.6 °C)	
R	0.01 4600.006	0.0 to below 100.0 °C	±(0.6% of reading + 1.2 °C)	
K	0.0 to 1600.0 °C	100.0 to 1600.0 °C	±(0.5% of reading + 1.0 °C)	
N	-200.0 to 1250.0 °C	-200.0 to below -100.0 °C	±(0.3% of reading + 0.8 °C)	
IN	-200.0 to 1250.0 °C	-100.0 to 1250.0 °C	±(0.2% of reading + 0.6 °C)	

* Accuracy of the Internal Reference-junction Compensator Within ±1.0 °C (When temperature balanced at input terminals) (The ambient temperature is 25 ± 10 °C) Within ± 2.0 °C (When temperature balanced at input terminals)

(The ambient temperature is other than mentioned above.)

Standard Accessories Terminal cover UM-51B

Strain Unit USS-51B	
Channels	10
Measuring Targets	Strain gage, strain-gage transducers,
	potentiometer-type sensors
Bridge Excitation	2 VDC constant voltage (Applied constantly
Power Supply to Sensors	2 VDC constant voltage (Applied constantly)
Gage Factor	2.00 fixed
	(Correction is possible at 2.00/Ks with the
	engineering value conversion function)

Measuring Range, Resolution, Accuracy (In static (DC) Inputting)

Target	Mode	Measuring Range	Resolution	Accuracy
Strain	L	0 to ±19 k ×10 ⁻⁶ strain	1 ×10 ⁻⁶ strain	±0.05% FS
Strain	Н	0 to ±200 k ×10 ⁻⁶ strain	10 ×10 ⁻⁶ strain	±0.03 % F3
Potent	iometers	0 to ±50%	0.01%	±0.1% FS

Note: Measuring range is indicated when the initial measurement and the original value measurement are performed. In the case of a measure value measurement, the value of the initial measurement is subtracted in advance from the original measurement value.

Optional Accessories Terminal cover UT-50A

■Voltage Unit USV-51B

10 Channels

Measuring Targets DC voltage, voltage output type sensors

Measuring Range, Resolution, Accuracy (In static (DC) Inputting)

Measuring Range	Resolution	Accuracy	Signal Source Resistance
0 to ±20.000 V	1 mV	±0.05% FS	50 Ω or less

Standard Accessories Terminal cover UT-50A

■Thermocouple Unit UST-51B

Channels

10

Measuring Targets Temperature (Thermocouples)

Measuring Range, Resolution, Accuracy (In static (DC) Inputting)

Types	Measuring Range		Accuracy
К	L	-200.0 to 437.0°C	±0.8°C
	Н	-200.0 to1200.0°C	±2.8°C
Т	_	-200.0 to 350.0°C	±0.7°C
F	L	-200.0 to 260.0°C	±0.5°C
E	Н	-200.0 to 800.0°C	±1.7°C
- 1	L	0 to 330.0°C	±0.6°C
J	Н	0 to 750.0°C	±2.0°C
R	_	0 to 1600.0°C	±2.2°C
		-200.0 to below -100.0 °C	±(0.4% of reading + 1.0 °C)
N		-100 to 530.0 °C	±(0.3% of reading + 0.8 °C)
IN	П	-200.0 to below -100.0 °C	±(0.4% of reading + 1.2 °C)
	Н	-100 to 1250.0 °C	±(0.3% of reading + 1.0 °C)

* Accuracy of the Internal Reference-junction Compensator, when temperature balanced at input terminals, and the ambient temperature is $25\pm10\,^{\circ}\text{C}.$

Type K, T, E, J, and R: Within ±0.5 °C

Type N: Within ±1.0 °C

Note: Accuracy does not include internal standard connection accuracy. Switching between internal and external standard connect compensators is possible. Thermocouple resistance 300 Ω or less (K type)

Standard Accessories Terminal cover UT-50A

■Connection Cable U-17 to 20 (See page 8-5.)

■Isolation Transformer UPT-300B

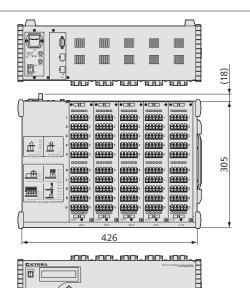
This is used to obtain good measurement results under bad power supply conditions (Strong noise, etc.).

■One-touch Terminal Block JT-1A

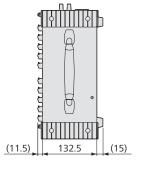
A terminal block that supports one-touch connection of input lead wires, and is used for attaching input terminals. 1 for each lead wire (Sale units: 10).

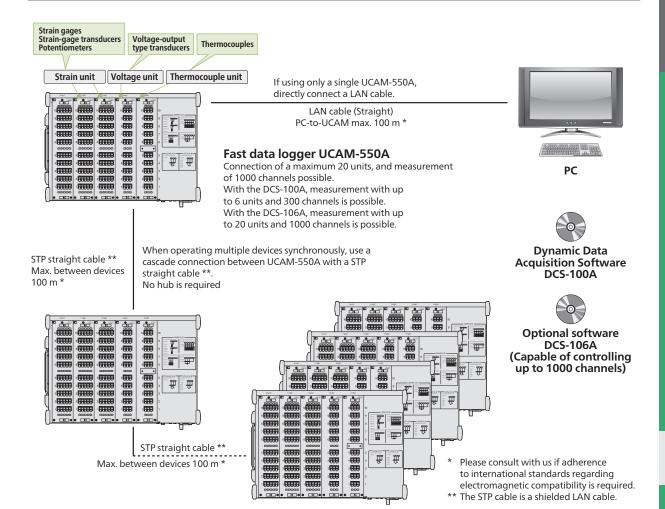
■Dummy Panel UD-50A

Covers the slots of a UCAM-550A that does not have a measuring unit installed.

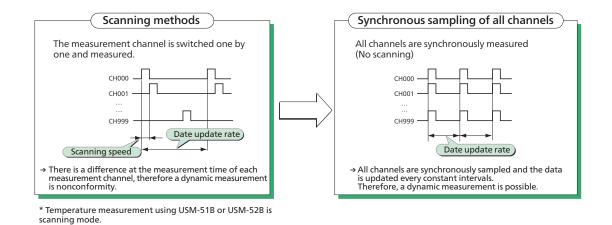

DCS-100A software for UCAM-550A section

*For details of DCS-100A, see page 4-3.


Controllable Units Max. 6 (Max. 300 channels) Max. 20 (Max.1000 channels), optional DCS-106 is required. Interfaces LAN Data Storage The measured data is stored in the PC			
DCS-106 is required. Interfaces LAN			
Interfaces LAN	hard disk as		
	hard disk as		
Data Storage The measured data is stored in the PC	hard disk as		
a KS2 file.			
Sampling Frequencies 1, 2, 10, 20, and 50 Hz			
Measuring Modes Manual, manual (Data points preset),			
interval, and analog trigger			
Measuring Function Measure, original			
Measure: Measured value = Sensor output value - Initial va	lue		
Original: Measured value = Sensor output value			
Calibration Factor Calculation ON/OFF setting in all channels	of one batch		
Calibration factor compensation: Measured value \times Calibration factor	actor + Offset		
Channel Conditions Measurement, mode, range, calibration factor,			
offset, unit, initial value, CH name, measuring range,			
decimal digits, upper limit, lower limit,			
rated capacity, rated output			
(Selection of any display item is possib	le.)		
Initial Value Measurement Measures the initial value of ea	ich sensor.		
Manual Measurement Measurement is made from a press of	of the REC		
button to a press of the STOP button or to			
completion of recording to the data points preset.			
Interval Measurement Measurement is made automatically	at preset		
intervals from the preset starting time.			
Analog Trigger Measurement Start and/or stop recording	j based on		


Analog Trigger Conditions	
End Trigger	Settable
Delay	Both start and end max. 3000 points/channel
Trigger Channels	Any 1 channel
Trigger Level	Sets in physical quantity.
Trigger Slope	Up, down
Changing Stroke	Changes the data, before the stroke and after the
	stroke, when using a displacement transducer.
Static Measurement	Every time the DCS-100A starts recording data,
	the DCS-100A additionally saves the moving-
	averaged measured data in a single CSV format file
	in manual and interval modes.
Burnout Check	For USM-51B/52B only
TEDS	Reads sensor's information and sets to channel
	condition automatically.
	(USM-51B/52B only)
Setting and Loading Parameters Sets and loads the UCAM-550A	
	internal parameters.
Environmental Settings	
Hardware Configuration	
	Setting of connected units, device name,
	setting for IP address
	Reading hardware configuration from the
	UCAM-550A is possible.
Communication Status Checked by reading the version of the UCAM	

Dimensions



specified trigger conditions.

■All channels synchronously sampling*

